Motor Mounts

The first step is positioning the engine properly within the engine bay.  I built a dolly that supports the engine at the desired height (6″ ground clearance) as an aid.  Here’s the engine on the dolly:


Then it’s a matter of centering the axle CV joint flanges left-to-right, and matching the engine CV joint centerline front-to-rear to the centerline of the rear wheels.  I try to retain the original engine motor mounts where possible since they’re engineered for the particular engine.  This engine had some heavy cast iron mounts that I ditched in favor of welded steel replacements, and of course the chassis-side mounts are all custom to fit the Scorpion.  For this engine, significant crossmember reliefs were required, mostly for the front exhaust, but also various other engine components.  The resulting crossmember was substantially reinforced to compensate for all the cutouts.


Fabrication of the motor mounts requires a lot of head scratching, as there are many possible options.  I tried to minimize any permanent intrusion into the engine bay, and ended up with none at all.  The process of fabricating motor mounts is a multi-step process, as measurements are difficult, and things shift as you apply the engine weight.  The mount pieces are cut up, and tack welded together, then broken and tacked up again as needed until the positions are correct and welding can be completed.


The motor mounts, from left to right:

  1. Transaxle mount – I’m not sure how important this mount is, and the swap kits for dropping this engine into your Honda Civic don’t include this mount.  I’ll probably try with and without.
  2. Rear motor mount – bolts to the Scorpion bulkhead behind the engine, which I’ve already reinforced to handle the load.
  3. Passenger side mount – I welded a bracket onto the right rear fender well to attach the top of this mount, and the bottom bolts to the frame.
  4. Front mount – this attaches to the crossmember.  The bracket shown below the stock mount provides a platform at the correct height, and is removable to allow gas tank removal without removing the crossmember.  This mount is vacuum controlled via a solenoid valve, which I assume leaves the mount soft at idle and stiffer under load.

The stock front and rear mounts include shock absorbers, but I’m going to hold off on these until I see whether or not they’re really required (there’s no top “dog bone” mount).  Below are the engine compartment attachment points that I added. To create attachment points in the frame, I drilled holes and welded in nuts flush with the surface.

Here is the crossmember with rear motor mount and transaxle mount installed.


And views below with mounts installed and the engine in place – transaxle mount, rear mount, and passenger side mount.


J32A2 Extraction

With the engine now running, I drove the car into my “shop” (2 bays of my 3 car garage).


With engine out, I need to make sure that 1) it still ran, and that 2) I had identified all the modules and wiring that I needed to retain.  Yes I actually did fire up the engine on this rig:


…and now for a test fit in the Scorpion engine bay.  Were my measurements correct?


and yes, if fits with room to spare – nice!  The project is now officially underway.

Flashback – Thema 16V Turbo Swap

Before I get too far into the V6 project, I thought it would be of interest to outline my Scorpion’s history and describe its previous incarnation.  I bought my Scorpion in 1981 with 25k miles from the original owner in LA.  I drove it stock for a while, then bought a 2.0 liter twin cam from a Montecarlo that met an untimely end here in California.  Although rougher running and not as rev-happy, the extra torque was sure nice.  By then I was participating in track days, and was getting tired of pulling over on the straights to let faster cars go by.  Barry Waterhouse (now deceased) in the UK told me about his 8V Thema turbo conversion, and found an engine/transaxle for me.  That was fun, but it was more of a quick & dirty swap, and I wanted a better planned implementation, with a 16V that was boosted to 300 or more HP, since that sounded like a lot of fun.

I found a 16V turbo engine/trans in the US that had been brought over by a FIAT employee in Michigan, but was too slow on the trigger and ended up spending 2x to buy it from the person who moved faster.  Here’s the engine after all the updates:

16V on cart

The header is TIG welded from 321 stainless steel which feeds an oversize Garrett GT28RS ball bearing turbo with 1.2 bar wastegate into a 3″ exhaust.  Intercooler, throttle body, injectors and cams are all uprated.  The engine has forged, oil-cooled pistons, peened rods, a 3 stage dry sump oiling system, 12mm head bolts, and racing head gasket.  The flywheel was lightened, and joined with a competition clutch and pressure plate.  A programmable ECM provides engine control closed loop via a wide range O2 sensor.   The transaxle is from a Thema 8.32 (which has a Ferrari V8) to which I added a Transtad torque-sensing limited slip differential.


All the above added up to 285 RWHP and 284 lb-ft  of torque as measured on the chassis dyno at 034Motorsport.  Performance exceeded my expectations, and was amazing for passing slower traffic on 2 lane back roads, but total overkill for any other street use.  It was also a great track setup, except that all the heat back there takes its toll.  The turbo alone becomes a 25 kilowatt heater at full tilt, so fair warning to those looking for the High Boost experience!

burnout_2007 no plates


Where It Starts

If you’re just tuning in, the About page gives the background on this project.  After considering many options, I opted for the Honda/Acura J32A2 V6 for my (latest) Scorpion swap.  It’s a very compact all-aluminum 60 degree V6 that I believe will fit the character of the car, with a large array of aftermarket parts available.  Yes it’s not Italian, but after living through two other Italian engine swaps, I’m looking forward to a local and extensive support structure and low cost parts.

Another reason for this engine choice is that a few versions of the engine were available with a 6 speed transaxle and limited slip differential.  I priced JDM engine/trans options, and decided that I’d be better off purchasing a whole car, which would also provide every conceivable part I might need (axles, motor mounts, wiring, and ECU, to name a few).  I found an ’03 Acura CL Type S at a salvage auction in LA, got a temporary dealers license from a broker, and a couple of days later was in LA with a trailer.


I got it cheaply because, in addition to front end damage, the car was advertised as “Won’t Start”.  It turned out that it wouldn’t start because the key provided was the wrong key for the car.  After removing the ignition lock and disabling the immobilizer, it started up just fine.  Aside from a broken motor mount and cracked ignitor coil, the engine appears to be fine.


It’s a beauty, huh?  Actually the car is pretty nice, all leather interior with every option.  My idea was to part it out on Craigslist which could have paid for the purchase price.  However after wasting way too much time dealing with CL flakes, I gave up and towed it to my local Pick-N-Pull where they insisted on giving me real money for it.  So far so good!